Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	<cse></cse>	<25/11/2020>		

CONTINUOUS INTERNAL EVALUATION- 2

Dept:CSE	Sem / Div:3/ A & B	Sub:Data Structures and its Applications	S Code:18CS32			
Date:01/12/2020	Time: 2:30-4:00 pm	Max Marks: 50	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

-)	Questions	Marks	RBT	COs
	2 N	Questions	1/14/145		005
		PART A			
1	a	 Give the node structure and C functions for the following operations on a singly linked list of integers. (i) Create a list. (ii) Assume the list contains 3 nodes with data 10,20,30. Insert a node with data 40 at the end of the list. (iii) Insert a node with data 50 between the nodes having data values 10 and 20. (iv) Display the singly linked list 	9	L3	CO3
	b	Write an algorithm to add 2 polynomials using circular singly linked list (CSLL). And also represent the given polynomial using CSLL. $P(x, y, z) = 6x^2y^2z - 4yz^5 + 3x^3yz + 2xy^5z - 2xyz^3$	8	L3	CO3
	c	Explain memory allocation using Garbage collection with examples. Write a note on overflow and underflow condition.	8	L2	CO3
		OR			
2	a	 What are the advantages of doubly linked list over singly linked list? Write a C function to perform the following operations on double linked list. (i) Inserting a node at the beginning. (ii) Deleting a node at the end. (iii) Inserting an item at a specified location. 	9	L3	CO3
	b	How can an ordinary queue be represented using a singly linked list? Write C functions for linked implementation of ordinary queue insertion and deletion.	8	L3	CO3
	c	Define sparse matrix. Give the sparse matrix representation of linked list for a given matrix. $A = \begin{bmatrix} 0 & 10 & 0 & 0 \\ 3 & 0 & 0 & 5 \\ 8 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \end{bmatrix}.$	8	L2	CO3
2	0	PART B	0	12	CO3
5	a	(10+12*15) + ((5*15+20)*5) Traverse the above generated tree using inorder, preorder and postorder. Also write Cfunction for each of traversal methods.	7		
	b	What is a tree? Explain with example	8	L2	CO3

Page: 1

	Vivekananda College of Engineering & Technology,Puttur					
[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]						
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi						
CRM08		Rev 1.10	<cse></cse>	<25/11/2020 >		

CONTINUOUS INTERNAL EVALUATION- 2

 i) Binary tree ii) Strictly binary tree iii) Complete binary tree iv) Skewed binary tree 			
c Explain Binary tree using Array representation and linked representation by taking one example. Which representation is more suitable and why?	8	L2	CO3
OR			
4 a Construct binary tree form following inorder and preorder sequence and also write post order traversal sequence	9	L2	CO3
inorder: 5,10,12,11,18,22,26,30,31,35,44,50,66,70,80			
preorder:30,11,10,5,12,22,18,26,50,35,31,44,70,66,80			
b Represent the following tree using	8	L2	CO3
i) Left Child- Right Sibling Representation			
ii) Degree-Two tree (Left child-Right child Representation)			
c Write functions to illustrate:	8	L3	CO3
i) Copying of binary trees			
ii) Testing equality of binary trees			